
© 2017, California Institute of Technology, Government sponsorship acknowledged.

AGILE IN A PLAN-DRIVEN ENVIRONMENT
AMMOS AUTOMATED DEPLOYMENT SYSTEM

Erik Monson

Jet Propulsion Laboratory, California Institute of Technology

© 2017, California Institute of Technology, Government sponsorship acknowledged.

ABOUT AMMOS AND ADS

INTRODUCTION

▸ Multi-Mission Operations and Services Office (MGSS) produces a multi-mission
Ground Data System known as AMMOS

▸ Used on many NASA missions primarily utilizing the Deep Space Network

▸ The Automated Deployment System is a new capability of AMMOS

▸ Service to automate deployment/configuration of AMMOS components to
mission environment

▸ One of the first AMMOS capabilities to leverage agile development practices

© 2017, California Institute of Technology, Government sponsorship acknowledged.

A LITTLE BIT ABOUT THE ORGANIZATION

BACKGROUND

▸ ADS developed in a large (primarily plan-driven) software organization, rooted
in:

▸ Legacy Software

▸ Legacy Process

▸ A long product lifecycle and funding plan

▸ A very extensive, growing list of mission customers

▸ A bold plan for modernization

© 2017, California Institute of Technology, Government sponsorship acknowledged.

THE NEED TO MODERNIZE

WHY AGILE?

▸ We are designing new applications and modernizing/improving existing
applications

▸ Our customer base is expanding (and they have opinions as well as requirements!)

▸ Other important factors

▸ The application space

▸ The technology space

▸ The talent space

© 2017, California Institute of Technology, Government sponsorship acknowledged.

EARLY CHALLENGES

EARLY ATTEMPTS AT AGILE

▸ Early attempts at integrating agile practices (e.g. scrum) into MGSS tasks proved challenging

▸ Although benefits were often realized….

▸ Stakeholders were more engaged in the design process

▸ More creative solutions and productive development team

▸ …the funding organization often felt detached….

▸ Difficult to tell what the final product would evolve into

▸ The plan driven process simply couldn’t absorb an agile process en masse

▸ Difficult to communicate plans to sponsor

▸ Too much, too soon? Agile is a culture change that requires some adaptation.

© 2017, California Institute of Technology, Government sponsorship acknowledged.

BUILDING ADS

KEY DRIVERS FOR AGILE PROCESS

▸ ADS team wished to engage stakeholders in the evolution of the product

▸ User interface is web-based

▸ Lends itself to close coordination with users

▸ Bring together stakeholders who rarely interact, yet have significant, inconspicuous interdependencies

▸ Configuration management

▸ End users

▸ Other institutional projects were having success with agile methodologies

▸ Plenty of support available (tools and teams)

▸ But how would we remain agile enough yet meet the needs of a plan-driven organization?

© 2017, California Institute of Technology, Government sponsorship acknowledged.

BRIDGING THE GAP

ADAPTING AGILE PRINCIPLES IN PLAN-DRIVEN PROCESS

▸ Provide high level details to program management sufficient to know what to
expect prior to beginning development

▸ High-level operations concepts

▸ Early requirements (corollaries to scrum ‘epics’)

▸ Once these details are agreed to…..

▸ Proceed with scrum cycle as planned, with some exceptions

▸ Large changes of scope are still subject to formal approval (change requests)

© 2017, California Institute of Technology, Government sponsorship acknowledged.

SEPARATE THE ‘RELEASE CYCLE’ PROCESS FROM THE TECHNICAL DETAILS

THE ‘TECHNICAL PLAN’

▸ Work Implementation Plan (WIP) focuses on detailing the release cycle schedule, workforce allocation, process, and gate
reviews

▸ A reduced-scope version of the plan-driven WIP

▸ A ‘Technical Plan’ (ADS parlance) details technical goals for the release, without committing to low-level deliverables. This
includes:

▸ Techical drivers

▸ Major new work planned

▸ Usually described in an expository format; may include early technical design artifacts for descriptive effect

▸ Defects to be corrected, if known

▸ Proposed requirements (high-level, traces to new work or defect corrections planned)

▸ This plan is formally reviewed; approval authorizes the task to proceed

© 2017, California Institute of Technology, Government sponsorship acknowledged.

DURING DEVELOPMENT

HOW CHANGES ARE CAPTURED FOR EACH RELEASE

Program Parlance ADS scrum Parlance

Major deliverables committed
to prior to a release cycle Draft Requirements Epics

Major deliverables added
during a release cycle Change Requests new Epics

Minor deliverables added
during a release cycle (not required per agreement) User Stories (tracing to Epics)

© 2017, California Institute of Technology, Government sponsorship acknowledged.

KEEPING TABS ON THE DEVELOPERS….

ENGINEERING ARTIFACTS DURING DEVELOPMENT

▸ The existing plan-driven process typically requires the following to be frozen prior to development of a release:

▸ Software Requirements Document (SRD)

▸ Software Design Document (SDD)

▸ However, during the ADS scrum process, these are incrementally released during each sprint (as appropriate)

▸ Epics as software requirements (export from JIRA)

▸ Design artifacts in SysML (MagicDraw)

▸ SDD is automatically updated/generated based on model inputs

▸ Artifacts frozen prior to subsystem test

▸ These go through normal review and approval process

▸ A formality; nothing should come as a surprise to the reviewer if they were keeping up with sprint reviews!!!

© 2017, California Institute of Technology, Government sponsorship acknowledged.

TYPICAL PLANNING AND ENGINEERING ARTIFACTS DURING VERSION LIFECYCLE

Typical Sprint

SysML Model
Updates

A
utogen

A
utogen

Design
Document SRD

Epics
Product
Backlog

A
s needed

Change Requests
(new Epics only)

Planning Cycle

Work Implementation
Plan

Technical Plan

Product Backlog
(as applicable)

Subsystem Test

Test Plan

Design Document
(frozen for review)

SRD
(frozen for review)

Release

Design Document
(approved, as required)

SRD
(approved, as required)

Test Report

Release Description
Document

User Documentation

© 2017, California Institute of Technology, Government sponsorship acknowledged.

HOW DID IT GO?

RECEPTION

▸ The hybrid waterfall/agile approach was well received

▸ The sponsor knew what they were getting from the beginning

▸ …but acknowledged that the design was iterative…..

▸ The user had input into the development process

▸ Everyone had better insight into task status at any given moment

▸ Developers were much happier!!

© 2017, California Institute of Technology, Government sponsorship acknowledged.

CONTINUOUS IMPROVEMENT

SCRUM LESSONS LEARNED

▸ Identifying key decision makers (often beyond formal authority) early in the process is very
important

▸ Always seek compromise!

▸ Agile requires a culture shift, which doesn't happen overnight

▸ Realize that there is no ‘one way forward’; much progress can be made with a hybrid
approach

▸ Retrospective is very valuable

▸ Agile processes often encourage this, however it needs to go beyond just the core team

QUESTIONS?

